3º DIA

MATEMÁTICA

Seja z $\in \mathbb{C}$. Das seguintes afirmações independentes:

I. Se
$$\omega = \frac{2iz^2 + 5\overline{z} - i}{1 + 3\overline{z}^2 + 2iz + 3|z|^2 + 2|z|}$$
, então

$$\overline{\omega} = \frac{-2i\overline{z}^{2} + 5z + i}{1 + 3z^{2} - 2i\overline{z} + 3\left|\overline{z}\right|^{2} + 2\left|z\right|}.$$

II. Se
$$z \neq 0$$
 e $\omega = \frac{2iz + 3i + 3}{(1 + 2i)z}$, então

$$\left|\omega\right| \leq \frac{2\left|z\right| + 3\sqrt{2}}{\sqrt{5}\left|z\right|}\,.$$

III. Se $\omega = \frac{(1+i)z^2}{4\sqrt{3}+4i}$, então 2 arg $z + \frac{\pi}{12}$ é um argumento de ω .

é (são) **VERDADEIRA(S)**

A) todas.

C) apenas II e III.

E) apenas II.

B) apenas I e II.

D) apenas I e III.

RESOLUÇÃO:

I) Números complexos possuem as seguintes propriedades:

(1)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$
(2)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$(2) \ \overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}$$

$$(3) \overline{Z_1 Z_2} = \overline{Z_1} \overline{Z_2}$$

$$(4) \; \overline{z^n} = \overline{z}^n$$

$$(5) \stackrel{=}{Z} = Z$$

(6)Se z é real puro $\overline{Z} = Z$, e se z é imaginário puro, $\overline{Z} = -Z$

$$(7)\left|\overline{z}\right| = \left|z\right|$$

Temos, então

$$\frac{1}{\omega} = \left(\frac{2iz^{2} + 5z - i}{1 + 3z^{2} + 2iz + 3|z|^{2} + 2|z|} \right)$$

pela propriedade (1),

$$\overset{-}{\omega} = \frac{\overline{2iz^2 + 5z - i}}{1 + 3z^2 + 2iz + 3\left|z\right|^2 + 2\left|z\right|}$$

pela propriedade (2),

$$\overline{\omega} = \frac{\overline{2iz^2} + \overline{5\overline{z}} - \overline{i}}{\overline{1} + \overline{3\overline{z}^2} + \overline{2iz} + \overline{3\left|z\right|^2} + \overline{2\left|z\right|}}$$

pela propriedade (3),

$$\overline{\omega} = \frac{\overline{2i}\overline{z^2} + \overline{5}\overline{z} - \overline{i}}{\overline{1} + \overline{3}\overline{z}^2} + \overline{2iz} + \overline{3}\overline{|z|^2} + \overline{2}\overline{|z|}$$

pela propriedade (4),

$$\overline{\omega} = \frac{\overline{2iz}^2 + \overline{5\overline{z}} - \overline{i}}{\overline{1} + \overline{3\overline{z}}^2 + \overline{2iz} + \overline{3\left|z\right|^2} + \overline{2\left|z\right|}}$$

pela propriedade (5),

$$\overline{\omega} = \frac{\overline{2i}.\overline{z}^2 + \overline{5}.z - \overline{i}}{\overline{1} + \overline{3}.z^2 + \overline{2i}.\overline{z} + \overline{3|z|^2} + \overline{2|z|}}$$

lembrando que |z| é real, pela propriedade (6),

$$\overline{\omega} = \frac{-2i.\overline{z}^{2} + 5.z + i}{1 + 3.z^{2} - 2i.\overline{z} + 3|z|^{2} + 2|z|}$$

por fim, pela propriedade (7),

$$\overset{-}{\omega} = \frac{-2i.\overset{-}{z^2} + 5.z + i}{1 + 3.z^2 - 2i.\overset{-}{z} + 3\left|\overset{-}{z}\right|^2 + 2\left|z\right|}$$

Logo, a alternativa é verdadeira.

$$\left|\omega\right| = \left|\frac{2iz + 3i + 3}{(1+2i)z}\right|$$

$$\left|\omega\right| = \frac{\left|2iz + 3i + 3\right|}{\left|(1 + 2i)z\right|}$$

$$\left|\omega\right| = \frac{\left|2iz + 3i + 3\right|}{\left|\left(1 + 2i\right)\right|\left|z\right|}$$

Como $\left|u+v\right| \leq \left|u\right| + \left|v\right|$, para todo ${\bf u}$ e ${\bf v}$ complexos, temos que

$$\left|\omega\right| \leq \frac{\left|2iz\right| + \left|3i + 3\right|}{\left|\left(1 + 2i\right)\right|\left|z\right|}$$

$$\left|\omega\right| \leq \frac{\left|2i\right|\left|z\right| + \left|3i + 3\right|}{\sqrt{5}\left|z\right|}$$

$$\left|\omega\right| \leq \frac{2\left|z\right| + 3\sqrt{2}}{\sqrt{5}\left|z\right|}$$

Logo, a alternativa é verdadeira.

III) Note que

$$1+i = \sqrt{2}. \operatorname{cis}(\pi/4)$$

$$4\sqrt{3} + 4i = 8. \operatorname{cis}(\pi/6)$$

$$z = \rho. \operatorname{cis}(\operatorname{arg} z)$$

Logo, temos

$$\omega = \frac{\sqrt{2}.\operatorname{cis}(\pi/4).(\rho.\operatorname{cis}(\operatorname{arg}z))^{2}}{8.\operatorname{cis}(\pi/6)}$$

$$\omega = \frac{\sqrt{2}.\operatorname{cis}\left(\pi/4\right).\rho^{2}.\operatorname{cis}\left(2\operatorname{arg}z\right)}{8.\operatorname{cis}\left(\pi/6\right)}$$

$$\omega = \frac{\sqrt{2} \cdot \rho^2}{8} \cdot \frac{\text{cis}(\pi/4) \cdot \text{cis}(2 \text{ arg z})}{\text{cis}(\pi/6)}$$

$$\omega = \frac{\sqrt{2} \cdot \rho^2}{8} \cdot \text{cis} \left(\pi/4 - \pi/6 + 2 \arg z \right)$$

$$\omega = \frac{\sqrt{2} \cdot \rho^2}{8} \cdot \text{cis} \left(\pi/12 + 2 \, \text{arg} \, z \right)$$

$$arg \omega = arg \left(\frac{\sqrt{2} \cdot \rho^2}{8} \cdot cis \left(\pi/12 + 2 arg z \right) \right)$$

 $arg\,\omega=\pi/12+2\,arg\,z$

E assim, a afirmação é verdadeira.

Como todas as afirmativas estão corretas, a alternativa verdadeira é a de letra A.

Gabarito: Letra A

O valor de y^2 – xz, para o qual os números sen $\frac{\pi}{12}$, x, y, z e sen 75°, nesta ordem, formam uma progressão aritmética, é:

A) 3⁻⁴

C) 6⁻²

E) $\frac{2-\sqrt{3}}{4}$

B) 2⁻⁶

D) 2⁻⁵

RESOLUÇÃO:

Considerando que os termos x, y e z estão em P.A, podemos desenvolver a expressão cujo valor foi pedido, obtendo

$$y^{2} - xy = y^{2} - (y - r).(y + r)$$

= $y^{2} - (y^{2} - r^{2})$
= r^{2}

Logo, precisamos da razão da P.A. Como os termos trigonométricos ocupam em uma P.A posições distantes de 4 unidades uma da outra, temos

sen
$$75^{\circ}$$
 – sen 15° = 4r
sen $(45^{\circ} + 30^{\circ})$ – sen $(45^{\circ} - 30^{\circ})$ = 4r

sen 45°.cos 30° + sen 30°.cos45° - sen 45°.cos 30° + sen 30°.cos45° = 4r

2.sen 30°. $\cos 45^\circ = 4r$

$$2\cdot\frac{1}{2}\cdot\frac{\sqrt{2}}{2}=4r$$

$$r=\frac{\sqrt{2}}{8}$$

Logo, temos que $y^2 - xy = r^2 = 1/32 = 2^{-5}$, o que nos leva à alternativa D.

Gabarito: Letra D

Considere a função

$$f = \mathbb{Z} \setminus \{0\} \to \mathbb{R}, \ f(x) = \sqrt{3^{x-2}} \left(9^{2x+1} \right)^{1/(2x)} - \left(3^{2x+5} \right)^{1/x} + 1$$

A soma de todos os valores de x para os quais a equação $y^2 + 2y + f(x) = 0$ tem raiz dupla é

A) 0

C) 2

E) 6

B) 1

D) 4

RESOLUÇÃO:

Para que a equação de segundo grau tenha raiz dupla, é necessário que seu discriminante seja nulo, portanto

$$\Delta = 0$$

$$2^2 - 4.1.f(x) = 0$$

$$f(x) = 1$$

$$\sqrt{3^{x-2}} \left(9^{2x+1}\right)^{1/(2x)} - \left(3^{2x+5}\right)^{1/x} + \cancel{1} = \cancel{1}$$

$$3^{(x-2)/2} \left(\! \left(\! 3^2 \right)^{\! 2x+1} \right)^{\! 1/(2x)} - 3^{(2x+5)/\, x} \, = 0$$

$$3^{(x-2)/2} \cdot 3^{(2x+1)/x} = 3^{(2x+5)/x}$$

$$\frac{x^2 + 2x + 2}{2x} = \frac{2x + 5}{x}$$

Como $x \neq 0$, vem que

$$X^2 - 2x - 8 = 0$$

cuja soma das raízes é, por Girard, igual a 2.

Gabarito: Letra C

Considere uma função $f:\mathbb{R}\to\mathbb{R}$ não constante e tal que $f(x+y)=f(x)f(y), \forall x,y\in R$

Das afirmações:

I. f(x) > 0, $\forall x \in R$

II. $f(nx) = [f(x)]^n, \forall x \in R, \forall n \in N^*$

III. f é par.

É (são) **VERDADEIRA(S)**

- A) apenas I e II.
- B) apenas II e III.
- C) apenas I e III.
- D) todas.
- E) nenhuma.

RESOLUÇÃO:

I) Para todo $x \in R$, temos que

$$f(x) = f\left(\frac{x}{2} + \frac{x}{2}\right) = \left[f\left(\frac{x}{2}\right)\right]^2$$

Como f(x/2) E R, então $[f(x/2)]^2 \ge 0$, consequentemente $f(x) \ge 0$ para todo $x \in R$.

Para que a afirmativa seja verdadeira, falta provar que não existe valor u no domínio para o qual f(u) = 0. Suponhamos, pois, a existência de tal real u. Teríamos, então, para todo x do domínio, que f(x) = f(u).f(x - u) = 0. Então teríamos que f(x) = 0 para todo x real, o que contraria a condição do enunciado, segundo a qual a função não é constante. Logo, não existe um real $\bf u$ conforme foi especificado, e então a afirmativa é verdadeira.

II)

Provemos o que foi pedido por PIF:

- i) Para n = 1, temos f(1.x) = f(x) = [f(x)]1, e então para n = 1 a afirmação é verdadeira.
- ii) Supondo que a afirmação é válida para n = k, temos que

$$f(kx) = [f(x)]^k$$

Multiplicando ambos os lados por f(x), temos

$$(f(x).) f(kx) = [f(x)]^k (.f(x))$$

$$f(x).f(kx) = [f(x)]^{k+1}$$

e, aplicando ao lado esquerdo da equação a propriedade da função dada no enunciado, temos

$$f(x + kx) = [f(x)]^{k+1}$$

$$f((k+1)x) = [f(x)]^{k+1}$$

ou seja, a afirmação é válida para k + 1.

Por PIF, a afirmativa está provada para todo x real.

III)

Primeiramente, temos que $f(0) = f(0 + 0) = f(0).f(0) = [f(0)]^2$, o que faz com que f(0) = 1 ou f(0) = 0. Porém, como provado anteriormente, $f(x) \ge 0$ para todo x real, e então devemos ter f(0) = 1. Temos então que

$$f(x - x) = f(x).f(-x)$$

$$f(0) = f(x).f(-x)$$

$$1 = f(x).f(-x)$$

$$f(-x) = 1/f(x)$$

Note que é impossível que f(x) = 1/f(x) em todo o domínio, pois para tal seria necessário que f(x) = 1 para todo valor de x, o que é impossível, pois a função não pode ser contínua. Logo, temos que

$$f(-x) = 1/f(x) \neq f(x)$$

E então a afirmativa é falsa.

Gabarito: Letra A

Considere o polinômio $P(x) = 2x + a_2x^2 + ... + a_nx^n$, cujos coeficientes 2, a_2 , ..., a_n formam, nesta ordem, uma progressão geométrica de razão q > 0. Sabendo que $-\frac{1}{2}$ é uma raiz de P e que P(2) = 5460, tem-se que o valor de $\frac{n^2 - q^3}{q^4}$ é igual a

A) 5/4

C) 7/4

E) 15/8

B) 3/2

D) 11/6

RESOLUÇÃO:

Sabendo que os coeficientes do polinômio estão em PG, o polinômio

$$P(x) = 2x + a_2x^2 + ... + a_nx^n$$

se transforma em

$$P(x) = 2x + 2qx^2 + 2q^2x^3 + ... + 2q^{n-1}x^n$$

note que, estando os coeficientes do polinômio em PG de razão q, os termos do polinômio enquadramse em uma PG de razão qx. Assim, aplicando a fórmula da soma dos termos da PG finita, temos

$$P(x) = \frac{2x \cdot \left(q^n x^n - 1\right)}{qx - 1}$$

Como -1/2 é raiz, temos que

$$P(-1/2) = \frac{-1.(q^{n}(-1/2)^{n}-1)}{-q/2-1} = 0$$

$$(-q/2)^n = 1$$

como q>0 (pelo enunciado), então é necessário ter n par (pois não é possível um número negativo elevado a um número ímpar resultar em um número positivo), e ainda q=2. Dessa forma, o polinômio fica da forma

$$P(x) = \frac{2x \cdot (2^{n}x^{n} - 1)}{2x - 1}$$

Substituindo o valor P(2) = 5460 na expressão anterior, obtemos

$$5460 = \frac{4.(2^{2n} - 1)}{4 - 1}$$

$$22^{n} - 1 = 4095$$

$$22^n = 2^{12}$$

$$n = 6$$

Logo,

$$\frac{n^2-q^3}{q^4}=\frac{36-8}{16}=\frac{7}{4}$$

Gabarito: Letra C

Dividindo-se o polinômio $P(x) = x^5 + ax^4 + bx^2 + cx + 1$ por (x-1), obtém-se resto igual a 2. Dividindo-se P(x) por (x+1), obtém-se resto igual a 3. Sabendo que P(x) é divisível por (x-2), tem-se que o valor de ab é igual a

(

A)
$$-6$$

RESOLUÇÃO:

Pelo teorema do resto, temos:

$$\begin{cases} P(1) = 2 \\ P(-1) = 3 \Rightarrow \\ P(2) = 0 \end{cases} \begin{cases} 1 + a + b + c + 1 = 2 \\ -1 + a + b - c + 1 = 3 \\ 32 + 16a + 4b + 2c + 1 = 0 \end{cases}$$

isolando os termos independentes e reescrevendo as equações através de sua matriz dos coeficientes, fica

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 3 \\ 16 & 4 & 2 & -33 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 2 & -3 \\ 16 & 4 & 2 & -33 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 3/2 \\ 0 & 0 & 1 & -3/2 \\ 16 & 4 & 0 & -30 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 3/2 \\ 0 & 0 & 1 & -3/2 \\ 1 & 0 & 0 & -3 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 & 9/2 \\ 0 & 0 & 1 & -3/2 \\ 1 & 0 & 0 & -3 \end{bmatrix}$$

$$a = -3$$
; $b = 9/2$; $c = -3/2$

logo, a expressão pedida vale

$$\frac{ab}{c} = \frac{-3.9/2}{-3/2} = 9$$

Gabarito: Letra E

Das informações a seguir sobre a equação $z^4 + z^3 + z^2 + z + 1 = 0$ e suas soluções no plano complexo:

- I. A equação possui pelo menos um par de raízes reais.
- II. A equação possui duas raízes de módulo 1, uma raiz de módulo menor que 1 e uma raiz de módulo maior que 1.
- III. Se n \in N* e r é uma raiz qualquer, então $\sum_{k=1}^{n} \left| \frac{r}{3} \right|^{k} < \frac{1}{2}$ é (são) **VERDADEIRA(S)**
- A) nenhuma.
- B) apenas I.
- C) apenas II.
- D) apenas III.
- E) apenas I e III

RESOLUÇÃO:

Note que, para $z \ne 1$, $z^4 + z^3 + z^2 + z + 1 = (z^5 - 1)/(z - 1)$. Essa substituição não afeta as raízes, pois z = 1, único termo para o qual as expressões divergem de valor, não é raiz de nenhuma delas. Portanto, para termos $z^4 + z^3 + z^2 + z + 1 = 0$, devemos ter $(z^5 - 1)/(z - 1) = 0$, e então $z^5 = 1$. Utilizando a forma trigonométrica $(z = \rho.cis \theta)$, temos que

$$(\rho.\text{cis }\theta)^5 = 1.\text{ cis }0$$

 $\rho^5.\text{cis }5\theta = 1.\text{ cis }0$

 ρ = 1 (as soluções encontram-se, no plano de Argand-Gauss, sobre a circunferência de centro na origem e raio 1)

 $5\theta = 2k\pi$, k E Z. Como $0 \le \theta < 2\pi$ e $\theta \ne 0$ (pois queremos z $\ne 1$), devemos ter $5\theta = 2\pi$, $5\theta = 4\pi$, $5\pi = 6\pi$ ou $5\pi = 8\pi$, o que nos leva a S = $\{2\pi/5, 4\pi/5, 6\pi/5, 8\pi/5\}$. Julguemos, pois, as afirmativas

- I. Falso. A equações não possui raízes reais.
- II. Falso. Como $\rho = 1$, todas as soluções têm módulo unitário.
- III. Como todos os termos do somatório são positivos, quanto maior n, maior o risco de a afirmativa ser falsa. Portanto, se a afirmativa for verdadeira para n $\rightarrow \infty$, será verdadeira para todo n. Como o módulo de todas as soluções é unitário, podemos reescrever o somatório como segue

$$\sum_{k=1}^{\infty} \left(\frac{\left|z\right|}{3}\right)^{k} = \sum_{k=1}^{\infty} \left(\frac{\rho}{3}\right)^{k} \Rightarrow \sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^{k}$$

que é a soma dos termos de uma PG infinita. Como sabemos, tal soma é dada pela equação

$$\boldsymbol{S}_{_{\infty}} = \frac{\boldsymbol{a}_{_{\boldsymbol{0}}}}{1-q} \mathrel{\dot{\ldots}} \boldsymbol{S}_{_{\infty}} = \frac{1/3}{1-1/3} \mathrel{\dot{\ldots}} \boldsymbol{S}_{_{\infty}} = \frac{1}{2}$$

Logo, como não é possível pegar infinitos termos em uma soma, o valor do somatório nunca ultrapassará 1/2, e então a afirmativa é verdadeira.

Gabarito: Letra D

Seja $k \in R$ tal que a equação $2x^3 + 7x^2 + 4x + k = 0$ possua uma raiz dupla e inteira x_1 e uma raiz x_2 , distinta de x_1 . Então $(k+x_1).x^2$ é igual a

A) -6

C) 1

E) 8

B) -3

D) 2

RESOLUÇÃO:

Seja $f(x) = 2x^3 + 7x^2 + 4x + k$. Se x_1 é raiz dupla de f(x), então tem que ser também raiz simples de f'(x). Vejamos as raízes de f'(x):

$$f'(x) = 6x^2 + 14x + 4$$

$$D = 196 - 4.4.6$$

$$x = (-14 \pm 10)/12$$

 $x_1,a = -1/3$ (não convém, pois foi dito que x_1 é inteiro)

$$X_{1,b} = -2$$

Logo, $x_1 = -2$. Pelas relações de Girard, vemos que

$$2x_1 + x_2 = -7/2$$

$$-4 + x_2 = -7/2$$

$$x_2 = 1/2$$

Ainda pelas relações de Girard, temos que

$$X_1^2 \cdot X_2 = -k/2$$

$$k = (-2)^2.2/2$$

$$k = -4$$

Logo,
$$(k + x_1).x_2 = (-4 - 2)/(1/2) = -3$$

Gabarito: Letra B

Considere o conjunto $S = \{(a,b) \in N \times N: a+b = 18\}$. A soma de todos os números da forma $\frac{18!}{a!b!}$

- A) 86
- C) 96
- E) 12!

B) 9!

D) 126

RESOLUÇÃO:

Substituindo a = 18 - b na expressão cujo valor foi pedido, temos

$$\frac{18!}{a!b!} = \frac{18!}{a!(18-a)!} :: \frac{18!}{a!b!} = C_{18,a}$$

$$\sum_{a=1}^{18} \frac{18!}{a!b!} = \sum_{a=1}^{18} C_{18,a}$$

Note agora que esse somatório é o somatório dos termos de uma linha do triângulo de Pascal, e então

$$\sum_{a=1}^{18} \frac{18!}{a!b!} = 2^{18} = 8^6$$

Gabarito: Letra A

O número de divisores de 17640 que, por sua vez, são divisíveis por 3 é

A) 24

C) 48

E) 72

B) 36

D) 54

RESOLUÇÃO:

Decompondo 17640 em fatores primos, obtemos 2³.3².5¹.7². Para compor divisores de 17640, podemos pegar diferentes proporções de cada fator desses:

Para que os divisores pegos sejam múltiplos de 3, a única restrição é que o expoente do 3 não pode ser o 0:

Logo, temos quatro possibilidades de expoentes para o fator dois, duas para o fator três, duas para o fator cinco e três para o fator sete. Logo, o total de divisores possíveis é 4.2.2.3 = 48.

PS.: Nesse exercício, calculamos a quantidade de divisores naturais que atendiam ao enunciado. Se considerássemos divisores inteiros, a resposta seria o dobro, mas como não há essa alternativa, subentende-se que se trata dos divisores naturais.

Gabarito: Letra C

Sejam A e P matrizes n x m inversíveis e B = $P^{-1}AP$. Das afirmações:

- I. B^T é inversível e $(B^T)^{-1} = (B^{-1})T$
- II. Se A é simétrica, então B também o é.
- III. $det(A-\lambda I) = det(B-\lambda I), \forall \lambda \in R$

é(são) VERDADEIRA(S)

- A) todas.
- B) apenas I.
- C) apenas I e II.
- D) apenas I e III.
- E) apenas II e III

RESOLUÇÃO:

I. $B = P^{-1}AP$

Tirando o determinante de ambos os lados, temos

 $\det B = \det (P^{-1}AP)$

 $\det B = \det P^{-1}$. $\det A$. $\det P$

 $det B = (det P)^{T}. det A. det P$

det B = det A

e, como A é inversível, det A \neq 0, e então det B \neq 0. Como det B = det B^T, então det B^T \neq 0, e então BT também é inversível. A afirmação $(B^T)^{-1} = (B^{-1})^T$ é uma conhecida propriedade de matrizes inversíveis.

II. Suponha, por exemplo, que temos $A = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$ e $P = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$ que satisfazem às condições do

enunciado. Temos, assim, que $P^{-1}=\begin{bmatrix}2/3 & 1/6\\-1/3 & 1/6\end{bmatrix}$, e então

$$B = P^{-1}AP$$

$$B = \begin{bmatrix} 2/3 & 1/6 \\ -1/3 & 1/6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 5/6 & -1/3 \\ -1/6 & 2/3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 1/6 & -13/6 \\ 7/6 & 17/6 \end{bmatrix}$$

Como percebemos, B não é simétrica, e então a afirmativa é falsa.

III. $B = P^{-1}AP$

Subtraindo λI de ambos os lados, temos que

$$B - \lambda I = P^{-1}AP - \lambda I$$

Como $P^{-1}P = I$, vê-se que $B - \lambda I = P^{-1}AP - \lambda P^{-1}P$

Como λ é escalar e a multiplicação de matriz por escalar é comutativa, podemos rearranjar os termos de forma que B – λI = $P^{-1}AP$ - $P^{-1}\lambda P$

Colocando P⁻¹ em evidência à esqueda, temos B – $\lambda I = P^{-1}(AP - \lambda P)$

Colocando P em evidência à direita, temos B – $\lambda I = P^{-1}(A - \lambda I)P$

Tirando o determinante de ambos os lados, pelo teorema de Binet vem que

$$det(B - \lambda I) = det(P^{-1}).det(A - \lambda I).detP$$

$$det(B - \lambda I) = (detP)^{-1}.det(A - \lambda I).detP$$

$$det(B - \lambda I) = det(A - \lambda I)$$

E então a afirmativa é verdadeira.

Gabarito: Letra D

O número de todos os valores de a \in [0,2 π], distintos, para os quais o sistema nas incógnitas x, y e z, dado por

$$\begin{cases}
-4x + y - 6z = \cos 3a \\
x + 2y - 5z = \sin 2a \\
6x + 3y - 4z = -2\cos a
\end{cases}$$

é possível e não homogêneo, é igual a:

- A) 2
- B) 3
- C) 4
- D) 5
- E) 6

Resolução:

Primeiramente, vamos analisar o determinante da matriz dos coeficientes:

$$\begin{vmatrix} -4 & 1 & -6 \\ 1 & 2 & -5 \\ 6 & 3 & -4 \end{vmatrix} = 32 - 30 - 18 + 72 - 60 + 4 = 0$$

ou seja, ou o sistema é impossível, ou possível e indeterminado. Para que seja possível, como pede o enunciado, o termo independente da linha nula que aparecer ao escalonarmos a matriz, tem que também ser nulo. Observe a matriz que representa o sistema:

Note que a linha nula pode ser obtida pela soma $L_3 + L_1 - 2L_2$, o que nos dá o termo independente $-2.\cos a + \cos 3a - 2.\sin 2a$. Igualando-o a zero, temos

```
-2.\cos a + \cos 3a - 2.\sin 2a = 0

-2.\cos a + \cos 2a.\cos a - \sin 2a.\sin a - 2.\sin 2a = 0

\cos a.(\cos 2a - 2) - \sin 2a.(\sin a + 2) = 0

\cos a.(\cos^2 a - \sin^2 a - 2) - 2.\sin a.\cos a.(\sin a + 2) = 0

\cos a.(\cos^2 a - \sin^2 a - 2) + \cos a.(-2.\sin^2 a - 4.\sin a) = 0

\cos a.(\cos^2 a - 3\sin^2 a - 4.\sin a - 2) = 0

\cos a.(\cos^2 a + \sin^2 a - 4.\sin a - 2) = 0

\cos a.(1 - 4\sin^2 a - 4.\sin a - 2) = 0

\cos a.(1 - 4\sin^2 a - 4.\sin a - 1) = 0

\cos a = 0 \rightarrow a = \pi/2 ou a = 3\pi/2 (soluções inválidas, pois tornam o sistema homogêneo)
```

ou

$$4\text{sen}^2 \text{ a} + 4.\text{sen a} + 1 = 0$$

 $\Delta = 16 - 16$

sen a = -4/8sen a = -1/2a = $7\pi/6$ ou a = $11\pi/6$ (soluções válidas)

Logo, as condições do problema são satisfeitas para dois valores.

Gabarito: Letra A

Para todo $x \in R$, a expressão $[\cos(2x)]^2 \cdot [\sin(2x)]^2 \cdot \sin x$ é igual a

A)
$$2^{-4}$$
.[sen 2x + sen 5x + sen 7x]

B)
$$2^{-4}$$
.[2 sen x + sen 7x.sen 9x].

C)
$$2^{-4}$$
.[-sen(2x).sen(3x) + sen(7x)]

D)
$$2^{-4}$$
.[-sen x + 2 sen(5x).sen(9x)]

E)
$$2^{-4}$$
.[sen x + 2 sen(3x) + sen(5x)]

Resolução:

$$[\cos(2x)]^2.[\sin(2x)]^2.\sin x =$$

Ajeitando os termos, temos

$$\frac{1}{2}$$
2 sen 2x cos 2x. $\frac{1}{4}$ 2.2 sen 2x cos 2x. sen x =

$$\frac{1}{2}$$
 sen 4x. $\frac{1}{4}$ 2 sen 4x. sen x =

$$\frac{1}{8}$$
 sen 4x. (2 sen 4x. sen x) =

Somando e subtraindo cos 4x.cos x ao interior do parênteses, temos que

$$\frac{1}{8} \operatorname{sen} 4x. (\cos 4x. \cos x + \sin 4x. \sin x - \cos 4x. \cos x + \sin 4x. \sin x) =$$

$$\frac{1}{8} \operatorname{sen} 4x. \left(\cos \left(4x - x \right) - \cos \left(4x + x \right) \right) =$$

$$\frac{1}{16}$$
 2 sen 4x. $(\cos(3x) - \cos(5x)) =$

$$\frac{1}{16}$$
 (2 sen 4x. cos 3x – 2 sen 4x. cos 5x) =

$$\frac{1}{16}$$
 (sen 4x. cos 3x + sen 3x cos 4x + sen 4x. cos 3x - sen 3x cos 4x +

$$+ sen 5x cos 4x - sen 4x. cos 5x - sen 5x cos 4x - sen 4x. cos 5x) =$$

$$\frac{1}{16} \left(sen \left(4x + 3x \right) + sen \left(4x - 3x \right) + sen \left(5x - 4x \right) - sen \left(5x + 4x \right) \right) = 2^{-4} \left(2 sen x + sen 7x - sen 9x \right)$$

Gabarito: Letra B

Considere os contradomínios das funções arco-seno, e arco-cosseno como sendo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ e $\left[0,\pi\right]$,

respectivamente. Com respeito à função $f:[-1,\ 1] \to \left[-\frac{\pi}{2},\frac{3\pi}{2}\right]$, f(x)= arcsen x+ arccos x, temos que

- A) F é não-crescente e ímpar.
- B) F não é par nem ímpar.
- C) F é sobrejetora.
- D) F é injetora.
- E) F é constante.

Resolução:

Seja a = arc sen x e b = arc cos x, temos

x = sen a

6

 $x = \cos b = \sin (\pi/2 - b)$ (esse valor é compatível com os contradomínios das funções arc sen e arc cos, pois o domínio da função arc sen é justamente atrasada de $\pi/2$ em relação ao da função arc cos).

Igualando as duas expressões para x, temos

sen a = sen
$$(\pi/2 - b)$$

Mas, como esse seno é a função inversa de um arco-seno, ele carrega no domínio a restrição do contradomínio do arco-seno. Nesse domínio restrito, a equação acima se reduz

$$a = \pi/2 - b$$

$$a + b = \pi/2$$

$$arc sen x + arc cos x = \pi/2$$

Logo f(x) é uma função constante.

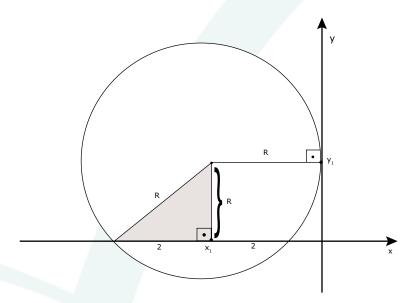
Gabarito: Letra E

Considere a família de circunferências com centros no segundo quadrante e tangentes ao eixo Oy. Cada uma destas circunferências corta o eixo Ox em dois pontos, distantes entre si de 4 cm. Então, o lugar geométrico dos centros destas circunferências é parte

- A) de uma elipse.
- B) de uma parábola.
- C) de uma hipérbole.
- D) de duas retas concorrentes.
- E) da reta y = -x

RESOLUÇÃO:

Temos a situação descrita como ilustrado a seguir



Sejam (x_1,y_1) as coordenadas genéricas dos centros das circunferências dessa família. Aplicando o teorema de Pitágoras ao triângulo retângulo hachurado, temos

$$2^2 + h^2 = R^2$$

que podemos reescrever como

$$\frac{R^2}{4} - \frac{h^2}{4} = 1$$

Note, entretanto, que x1 = -R e $y_1 = h$. Substituindo esses dados na expressão anterior, temos

$$\frac{\left(-x_{_{1}}\right)^{2}}{4}-\frac{y_{_{1}}^{2}}{4}=1\ \therefore\ \frac{x_{_{1}}^{2}}{4}-\frac{y_{_{1}}^{2}}{4}=1$$

o que é a equação de uma hipérbole, e então o lugar geométrico dos centros das circunferências dessa família é um ramo de hipérbole.

Gabarito: Letra C

A área do polígono, situado no primeiro quadrante, que é delimitado pelos eixos coordenados e pelo conjunto $\{(x, y) \in \mathbb{R}^2 : 3x^2 + 2y^2 + 5xy - 9x - 8y + 6 = 0\}$, é igual a

A) $\sqrt{6}$

C) 2√2

E) $\frac{10}{3}$

B) $\frac{5}{2}$

D) 3

RESOLUÇÃO:

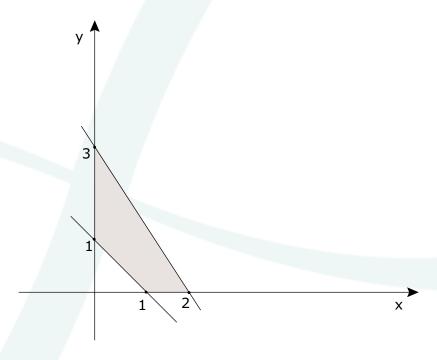
Podemos rearranjar a equação do enunciado da seguinte forma $3x^2 + (5y - 9y)x + (2y^2 - 8y + 6) = 0$ e então resolver a equação quadrática em x.

$$\Delta = 25y^2 - 90y + 81 - 12(2y^2 - 8y + 6)$$

$$\Delta = y^2 + 6y + 9 = (y + 3)^2$$

$$x = \frac{-5y + 9 \pm (y + 3)}{6}$$
 $\Rightarrow \frac{x_1 = -y + 1}{x_2 = -2y/3 + 2}$

Assim, o conjunto dado pela equação do enunciado é composto pelas retas y = -x + 1 e y = 3 - 3x/2. Observe, no esquema a seguir, o polígono determinado por essas retas e pelos eixos coordenados:



Como percebemos, a área hachurada pode ser calculada pela diferença das áreas dos triângulos determinados por cada reta com os eixos coordenados. Numericamente, temos

$$\mathsf{A} = \frac{3 \cdot 2}{2} - \frac{1 \cdot 1}{2} \mathrel{\therefore} \mathsf{A} = \frac{5}{2}$$

Gabarito: Letra B

Sejam \mathbf{r} e \mathbf{s} duas retas paralelas distando entre si 5 cm. Seja P um ponto na região interior a estas retas, distando 4 cm de \mathbf{r} . A área do triângulo equilátero PQR, cujos vértices Q e R estão, respectivamente, sobre as retas \mathbf{r} e \mathbf{s} , é igual, em cm², a

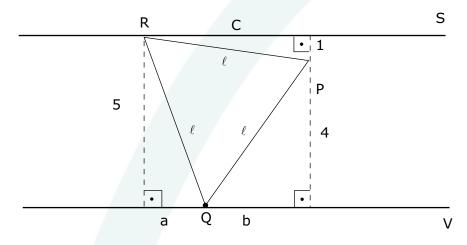
A)
$$3\sqrt{15}$$

E)
$$\frac{7}{2}\sqrt{15}$$

D)
$$\frac{15}{2}\sqrt{3}$$

Resolução:

Na situação descrita, traçando por P e por R segmentos auxiliares perpendiculares a r e a s, obtemos três triângulos retângulos, conforme esquematizado a seguir:



Aplicando o teorema de Pitágoras aos três triângulos retângulos, temos

$$a^{2} + 25 = I^{2}$$
 $a = \sqrt{I^{2} - 25}$
 $b^{2} + 16 = I^{2} \Rightarrow b = \sqrt{I^{2} - 16}$
 $c^{2} + 1 = I^{2}$ $c = \sqrt{I^{2} - 1}$

Entretanto, pelos paralelismos da situação, vemos claramente no desenho que a + b = c. Logo

$$\sqrt{l^2 - 25} + \sqrt{l^2 - 16} = \sqrt{l^2 - 1}$$

$$l^2 - 25 + l^2 - 16 + 2\sqrt{(l^2 - 16)(l^2 - 25)} = l^2 - 1$$

$$2\sqrt{(l^2 - 16)(l^2 - 25)} = 40 - l^2$$

$$4(l^4 - 41l^2 + 400) = 1600 - 80.l^2 + l^4$$

$$3l^4 - 84.l^2 = 0$$

$$l^2(3l^2 - 84) = 0$$

$$l = 0 \text{ (inconsistente)}$$

ou

$$l^2 = 28$$

A área do triângulo é dada por

$$A = \frac{I^2 \sqrt{3}}{4} \Rightarrow A = 7\sqrt{3}$$

Gabarito: Letra B

Considere três polígonos regulares tais que os números que expressam a quantidade de lados de cada um constituam uma progressão aritmética. Sabe-se que o produto destes três números é igual a 585 e que a soma de todos os ângulos internos dos três polígonos é igual a 3 780°. O número total das diagonais nestes três polígonos é igual a

A) 63

C) 90

E) 106

B) 69

D) 97

RESOLUÇÃO:

Sejam n_1 , n_2 e n_3 os números de lados de cada polígono. Sabemos que n_1 . n_2 . n_3 = 585, que n_1 , n_2 e n_3 devem ser números inteiros e que n_1 < n_2 < n_3 . Decompondo 585 em fatores primos, obtemos: 585 = 13.5.3.3. Logo, temos, como valores para n_1 , n_2 e n_3 , as seguintes possibilidades:

$n_{_1}$	n ₂	n_3
13.3 = 39	5	3
5.3 = 15	13	3
13	3.3=9	5
13.3.3 = 117	5	1
13.5.3 = 195	3	1
5.3.3 = 45	13	1
13.5 = 65	3.3 = 9	1
13.3 = 39	5.3 = 15	1

Como percebemos, a única possibilidade em que os termos aparecem em PA é $(n_1, n_2, n_3) = (13, 9, 5)$. Portanto, temos como total de diagonais do polígono

$$C_{13,2} - 13 + C_{9,2} - 9 + C_{5,2} - 5 =$$

$$\frac{13.12}{2} - 13 + \frac{9.8}{2} - 9 + \frac{5.4}{2} - 5 =$$

$$78 - 13 + 36 - 9 + 10 - 5 = 97$$

Gabarito: Letra D

Considere o triângulo isósceles OAB, com lados \overline{OA} e \overline{OB} de comprimento $\sqrt{2}R$ e lado \overline{AB} de comprimento 2R. O volume do sólido, obtido pela rotação deste triângulo em torno da reta que passa por O e é paralela ao lado \overline{AB} , é igual

A) $\frac{\pi}{2}R^3$

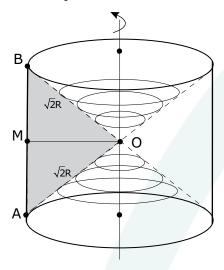
C) $\frac{4\pi}{3}$ R³

E) $\sqrt{3}\pi R^3$

B) πR^3

D) $\sqrt{2}\pi R^3$

Resolução:



Observe o desenho anterior. Seja M o ponto médio de \overline{AB} , note que, como DAOB é isósceles retângulo, DBOM também o é, e então OM = MB = AB/2 = R. O volume pedido é o volume do cilindro (de raio OB = R) menos o volume dos dois cones inscritos ao cilindro, que são idênticos. Fazendo as contas,

$$V = V_{cilindro} - 2V_{cone}$$

$$V = \pi R^2.2R - 2.\frac{1}{3}\pi R^2.R$$

$$V = \left(\frac{6}{3} - \frac{2}{3}\right) \pi R^3$$

$$V = \frac{4}{3}\pi R^3$$

COMENTÁRIO:

Observe que, não por coincidência, o volume do sólido é igual ao volume de uma esfera de raio R. Isso se deve ao fato de o sólido cujo volume foi pedido ser a anticlépsidra, cujo volume, pelo princípio de Cavalieri, podemos demonstrar ser igual ao volume da esfera.

Gabarito: Letra C

Considere uma pirâmide regular de altura igual a 5 cm e cuja base é formada por um quadrado de área igual 8 cm². A distância de cada face desta pirâmide ao centro de sua base, em cm, é igual a

A)
$$\frac{\sqrt{15}}{3}$$

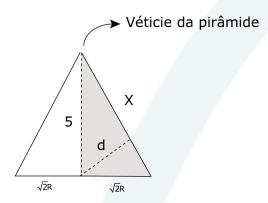
C)
$$\frac{4\sqrt{3}}{5}$$

$$B) \frac{5\sqrt{6}}{9}$$

D)
$$\frac{7}{5}$$

Resolução:

Note que um retângulo de área $8~\text{cm}^2$ tem lado valendo $2\sqrt{2}~\text{cm}^2$. Considere na pirâmide a seção definida por um plano que passa por seu vértice e é perpendicular à base e a duas faces opostas. Tal seção aparece ilustrada a seguir:



Aplicando o teorema de Pitágoras ao triângulo hachurado, temos

$$X^2 = 25 + 2$$

 $x = 3\sqrt{3}$

Igualando duas diferentes expressões para a área do mesmo triângulo hachurado, obtemos

$$\frac{d.3\sqrt{3}}{2} = \frac{5.\sqrt{2}}{2} \Rightarrow d = \frac{5.\sqrt{6}}{9}$$

Gabarito: Letra B

Sejam U um conjunto não-vazio e A \subset U, B \subset U. Usando apenas as definições de igualdade, reunião, interseção e complementar, **PROVE** que:

I. Se $A \cap B = \emptyset$, então $B \subset A^c$.

II. $B \setminus A^c = B \cap A$.

RESOLUÇÃO:

Τ.

 $B \subset U \Leftrightarrow B \cap U = B$

Como, pela definição de complementar, $A \cup A^C = U$, da equação anterior temos

$$B \cap (A \cup A^C) = B$$

$$(B \cap A) \cup (B \cap A^C) = B$$

Como, pelo enunciado, B \cap A = \emptyset , vem que

$$B \cap A^C = B$$

E consequentemente $B \subset A^{c}$.

II.

$$B\setminus A^{C} = \{x \in U/ x \in B \ e \ x \notin A^{C} \}$$

Entretanto, pelo conceito de complementar, sabemos que $\forall x \in U, x \notin A^c \Leftrightarrow x \in A$, e então o conjunto $B \setminus A^c$ pode ser reescrito como

$$B \setminus A^{C} = \{x \in U \mid x \in B \in x \in A\}$$

O que é, pela definição, a interseção dos conjuntos A e B.

$$B \cap A = \{x \in U/ x \in A e x \in B\}$$

Determine o conjunto dos números complexos z para os quais o número

$$\omega = \frac{z + \overline{z} + 2}{\sqrt{\left|z - 1\right|} + \left|z + 1\right| - 3}$$

pertence ao conjunto dos números reais.

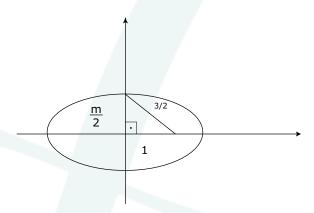
Interprete (ou identifique) este conjunto geometricamente e FAÇA um esboço do mesmo.

RESOLUÇÃO:

Seja z=a+bi, $a,b\in R$, o numerador da expressão vale a+bi+a-bi+2=2a+2 o que é sempre um número real. Então, para que ω seja um número real, o denominador também precisa ser real:

$$\sqrt{\left|z-1\right|+\left|z+1\right|-3} \,\in\, \mathbb{R} \,\Leftrightarrow \left|z-1\right|+\left|z+1\right|-3>0 \,\Leftrightarrow \left|z-1\right|+\left|z+1\right|>3$$

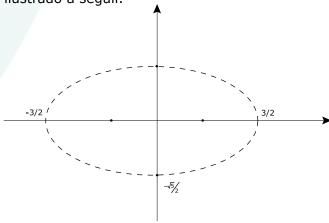
Traduzindo para português a inequação anterior, temos que, para que um dado ponto do plano complexo pertença ao conjunto desejado, a distância (módulo) dele até o ponto (1,0) somada à distância dele ao ponto (-1,0) tem que ser superior a três. Como sabemos, uma elipse é o conjunto dos pontos cuja distância até um ponto específico (um dos focos) somada à distância até outro ponto específico (o outro foco) é constante (igual à medida do semieixo maior). Então, o conjunto pedido é o dos pontos exteriores a uma elipse. A medida do semieixo menor pode ser calculada através do teorema de Pitágoras, como na ilustração a seguir:



$$\frac{m^2}{4}+1=\frac{9}{4} \Rightarrow m=\sqrt{5}$$

O conjunto dos números complexos pedido é composto pelos pontos do plano complexo exteriores à

elipse de focos (-1,0) e (1,0) e que passa pelos pontos $\left(-\frac{3}{2},0\right)$, $\left(\frac{3}{2},0\right)$, $\left(0,-\frac{\sqrt{5}}{2}\right)$ e $\left(0,\frac{\sqrt{5}}{2}\right)$, conforme ilustrado a seguir.



Considere a seguinte situação baseada num dos paradoxos de Zenão de Eleia, filósofo grego do século V A.C. Suponha que o atleta Aquiles e uma tartaruga apostam uma corrida em linha reta, correndo com velocidades constantes vA e vT, com 0 < vT < vA. Como a tartaruga é mais lenta, é-lhe dada uma vantagem inicial, de modo a começar a corrida no instante t=0 a uma distância d1>0 na frente de Aquiles. Calcule os tempos t_1 , t_2 , t_3 , ..., que Aquiles precisa para percorrer as distâncias d_1 , d_2 , d_3 , ..., respectivamente, sendo que, para todo $n \ge 2$, dn denota a distância entre a tartaruga e Aquiles

no instante
$$\sum\limits_{k=1}^{n-1}t_k$$
 da corrida.

Verifique que os termos tk, k = 1, 2, 3, ..., formam uma progressão geométrica infinita, **DETERMINE** as soma e dê o significado desta soma.

RESOLUÇÃO:

No início da corrida (t=0), a tartaruga se encontra a uma distância d1 de Aquiles. Para percorrer essa distância, Aquiles gasta $t_1 = d_1/v_A$.

Simultaneamente, a tartaruga percorre $d_2 = v_T \cdot t_1 = v_T \cdot d_1/v_A$. Posteriormente, para percorrer a distância d2, Aquiles gasta $t_2 = d_2/v_A = (v_T \cdot d_1/v_A)/v_A = v_T \cdot d_1/v_A$ 2. Nesse intervalo de tempo, a tartaruga percorre d3 = vT.t2 = vT.vT.d1/ vA2 = vT2.d1/ v_A^2 . Para percorrer d_3 , Aquiles gastará $t_3 = d_3/v_A = (v_T^2 \cdot d_1/v_A^2)/v_A = v_T^2 \cdot t_1/v_A^3$; e assim sucessivamente, enquanto Aquiles percorre a distância d_n em um tempo t_n , simultaneamente a tartaruga percorre mais uma distância d_{n+1} que Aquiles terá que percorrer no instante seguinte. A cada ciclo, o tempo que Aquiles gasta para percorrer a nova distância é igual ao tempo que ele gastou para percorrer a distância anterior multiplicado por v_T/v_A , de forma que os t_k constituem uma PG de termo inicial $t_1 = t_1/v_A$ e razão $t_2 = t_1/v_A$ Note que, como $t_3 < t_1/v_A$ temos

q < 1, e então está definida como sendo $S = \frac{a_1}{1-q}$ a soma dos infinitos termos dessa PG. Dessa forma,

temos que a soma dos infinitos termos da PG descrita pelos t_k vale

$$S = \frac{d_1 / v_A}{1 - v_T / v_A}$$
$$S = \frac{d_1}{v_A - v_T}$$

Como os t_k são os intervalos de tempo gastos para que Aquiles percorresse as distâncias recursivamente menores entre ele e a tartaruga, a soma desses valores é o tempo gasto por Aquiles para percorrer toda a distância que o afasta da tartaruga, e então é o tempo que Aquiles gastará para alcançá-la.

$$S = \frac{d_1}{V_{\Delta} - V_{T}}$$
 S é o tempo que Aquiles gasta para alcançar a tartaruga.

MOSTRE que toda função f: $R\setminus\{0\} \to R$, satisfazendo f(xy) = f(x) + f(y) em todo seu domínio, é par.

RESOLUÇÃO:

Para todo real x, podemos definir a = x^2 . Sabemos que $x^2 = (-x)^2 = a$. Aplicando esses dados à equação que descreve a propriedade da função, temos

$$f(a) = f(x.x) = f(x) + f(x) = 2f(x)$$

$$f(a) = f((-x).(-x)) = f(-x) + f(-x) = 2f(-x)$$

$$2f(x) = 2f(-x) \Rightarrow f(x) = f(-x)$$

E então a função é par para todo x pertencente ao domínio.

Sejam a, b, c e d constantes reais. Sabendo que a divisão de $P_1(x) = x^4 + ax^2 + b$ por $P_2(x) = x^2 + 2x + 4$ é exata, e que a divisão de $P_3(x) = x^3 + cx^2 + dx - 3$ por $P_4(x) = x^2 - x + 2$ tem resto igual a -5, **DETERMINE** o valor de a + b + c + d.

RESOLUÇÃO:

Seja $Q_1(x)$ o quociente da divisão $P_1(x)/P_2(x)$. Temos que $P_1(x) = Q_1(x).P_2(x)$, e como P_1 é de grau 4 e P_2 é de grau 2, Q_1 deve ser de grau 2. Note que, como o coeficiente do termo de grau 4 de P_1 é 1 e o coeficiente do termo de grau 2 de P_2 também é 1, o coeficiente do termo de grau 2 de P_2 também tem que ser 1. Portanto, representemo-lo genericamente por $Q_1(x) = x^2 + ux + v$.

Temos que

$$X^4 + ax^2 + b = (x^2 + ux + v).(x^2 + 2x + 4)$$

 $X^4 + ax^2 + b = X^4 + (u + 2)x^3 + (4 + v + 2u)x^2 + (4u + 2v)x + 4v$

Igualando os coeficientes de cada dois termos de mesmo grau, encontramos

$$\begin{cases} u + 2 = 0 \\ a = 4 + v + 2u \\ 4u + 2v = 0 \\ 4v = b \end{cases} \Rightarrow \begin{cases} u = -2 \\ v = 4 \\ b = 16 \\ a = 4 \end{cases}$$

Analogamente, temos que $P_3(x) = P_4(x) \cdot Q_2(x) + R_2(x)$. Note que o grau de P_3 é 3 e o de P_4 é 2, de forma que o grau de Q_2 deve ser 1. Note ainda que, novamente, o coeficiente do termo de maior grau de P_3 é igual ao coeficiente do termo de maior grau de P_4 , e então o termo de maior grau de P_4 deve ser 1. Temos que

$$x^3 + cx^2 + dx - 3 = (x^2 - x + 2)(x + w) - 5$$

 $x^3 + cx^2 + dx - 3 = x^3 + (w - 1)x^2 + (2 - w)x + (2w - 5)$

$$\begin{cases} w-1=c\\ 2-w=d\\ 2w-5=-3 \end{cases} \Rightarrow \begin{cases} w=1\\ c=0\\ d=1 \end{cases}$$

Conforme os valores anteriormente encontrados, temos que a + b + c + d = 21.

Sejam a, b, c e d números reais não-nulos. **EXPRIMA** o valor do determinante da matriz na forma de um produto de números reais.

$$\begin{bmatrix} bcd & 1 & a & a^2 \\ acd & 1 & b & b^2 \\ abd & 1 & c & c^2 \\ abc & 1 & d & d^2 \end{bmatrix}$$

Resolução:

$$D = \begin{vmatrix} bcd & 1 & a & a^2 \\ acd & 1 & b & b^2 \\ abd & 1 & c & c^2 \\ abc & 1 & d & d^2 \end{vmatrix}$$

Multiplicando a primeira linha por a, a segunda por b, a terceira por c e a quarta por d, temos

abcd.D =
$$\begin{vmatrix} abcd & a & a^{2} & a^{3} \\ abcd & b & b^{2} & b^{3} \\ abcd & c & c^{2} & c^{3} \\ abcd & d & d^{2} & d^{3} \end{vmatrix}$$

Agora, dividindo a primeira coluna por abcd, vemos que

$$\frac{abcd}{abcd}.D = \begin{vmatrix}
1 & a & a^2 & a^3 \\
1 & b & b^2 & b^3 \\
1 & c & c^2 & c^3 \\
1 & d & d^2 & d^3
\end{vmatrix}$$

E então fica evidente que se trata do determinante de Vandermonde, que pode ser calculado pela fórmula D = (b - a)(c - a)(d - a)(c - b)(d - b)(d - c).

ENCONTRE todos os valores de $a \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ para as quais a equação na variável real x,

$$arc\,tg\!\left(\sqrt{2}-1+\frac{e^x}{2}\right)+arc\,tg\!\left(\sqrt{2}-1-\frac{e^x}{2}\right)=a\;admite\;solução.$$

Resolução:

Aplicando a função tangente a ambos os lados da equação, ela se transforma em

$$tg\,a = tg \Bigg(arc\,tg\Bigg(\sqrt{2}\,-1 + \frac{e^x}{2} \Bigg) + arc\,tg\Bigg(\sqrt{2}\,-1 - \frac{e^x}{2} \Bigg) \Bigg)$$

Aplicando a fórmula da tangente da soma e lembrando que, no intervalo dado, $tg(arc\ tg\ \theta) = \theta$, temos

$$\begin{split} tg\, a &= \frac{\sqrt{2} - 1 + \frac{e^x}{2} + \sqrt{2} - 1 - \frac{e^x}{2}}{1 - \left(\left(\sqrt{2} - 1\right) + \frac{e^x}{2}\right)\!\!\left(\left(\sqrt{2} - 1\right) \!\!-\! \frac{e^x}{2}\right)} \\ tg\, a &= \frac{2\sqrt{2} - 2}{1 - \left(\left(\sqrt{2} - 1\right)^2 - \frac{e^{2x}}{4}\right)} \end{split}$$

$$\begin{split} tg \, a &= \frac{8\sqrt{2} - 8}{-8 + 8\sqrt{2} + e^{2x}} \\ e^{2x} &= \frac{8\sqrt{2} - 8}{tg \, a} - 8\sqrt{2} + 8 \Rightarrow e^{2x} = \left(8\sqrt{2} - 8\right) \left(\frac{1 - tg \, a}{tg \, a}\right) \end{split}$$

Para que a equação anterior tenha solução em x, é necessário e suficiente que o lado direito da equação seja maior que zero, e como o primeiro parênteses já o é, é necessário que o segundo também seja.

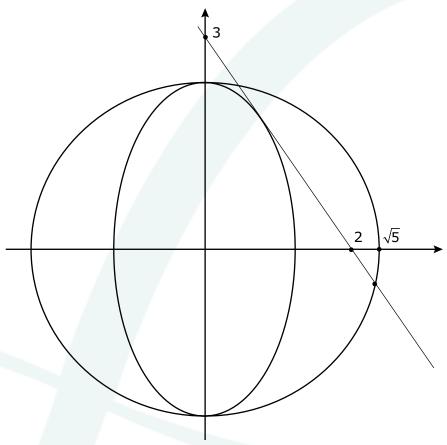
Resposta: $0 < a < \pi/4$

Sabe-se que uma elipse de equação $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ tangencia internamente a circunferência de equação

 $x^2 + y^2 = 5$ e que a reta de equação 3x + 2y = 6 é tangente à elipse no ponto P. **DETERMINE** as coordenadas de P.

RESOLUÇÃO:

Observe a ilustração a seguir, que esquematiza a situação descrita:



A parte positiva do eixo x intercepta a circunferência em $x=\sqrt{5}$ e a reta em x=2. Como $\sqrt{5}>2$ o semieixo maior da elipse, que está alinhada com os pontos de contato entre elipse e circunferência, tem que estar sobre o eixo y, pois caso contrário a reta não seria tangente à elipse (para chegar ao ponto $(\sqrt{5},0)$ da circunferência a elipse teria que cruzar a reta). Como a elipse e a reta se tangenciam internamente, temos que $b=R=\sqrt{5}$ Utilizando esse dado e fazendo a interseção entre reta e elipse, temos que

$$5x^{2} + a^{2}y^{2} = 5a^{2}$$

$$y = 3 - 3x / 2$$

$$5x^{2} + a^{2}\left(9 - 9x + \frac{9x^{2}}{4}\right) = 5a^{2}$$

$$(20 + 9a^{2})x^{2} - 36a^{2}x + 16a^{2} = 0$$

$$\Delta = 1296.a^{4} - 64.a^{2}\left(20 + 9a^{2}\right)$$

$$\Delta = 720.a^{4} - 1280.a^{2}$$

Entretanto, como há apenas um ponto de interseção entre a reta e a elipse, a equação da interseção deve retornar apenas um valor de y e um de x, e por isso o Δ deve ser nulo:

720.a⁴ - 1280.a² = 0

$$a^2 = 16/9 \rightarrow a = 4/3$$

Continuando a resolução da equação quadrática em x

$$x = \frac{36a^2}{40 + 18a^2}$$

Substituindo o valor de a, temos então

$$x = \frac{36.\frac{16}{9}}{40 + 18.\frac{16}{9}} \Rightarrow x = \frac{8}{9}$$

Substituindo esse valor na equação da reta, temos

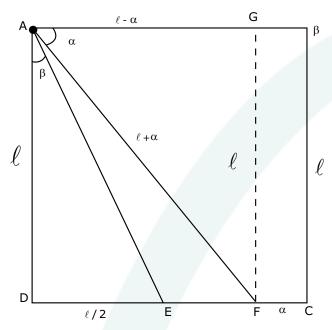
$$3.\frac{8}{9} + 2y = 6 \Rightarrow y = \frac{5}{3}$$

Resposta:
$$P\left(\frac{8}{9}, \frac{5}{3}\right)$$

Considere um quadrado ABCD. Sejam E o ponto médio do segmento \overline{CD} e F um ponto sobre o segmento \overline{CE} tal que m $\overline{(BC)}$ + m $\overline{(CF)}$ = m $\overline{(AF)}$. Prove que cos α = cos 2 β , sendo os ângulos α = BÂF e β = EÂD.

Resolução:

Seja a situação como esquematizada na ilustração a seguir:



Aplicando o teorema de Pitágoras ao triângulo ACG, temos (I - a)2 + I2 = (I + a)2

$$J^{2} + a^{2} - 2aI + I^{2} = J^{2} + a^{2} + 2aI$$

Como I ≠ 0, vem que

$$a = \frac{I}{4}$$

Aplicando o teorema de Pitágoras ao triângulo ADE, vemos que $AE = \frac{I\sqrt{5}}{2}$

Aplicando, então, as relações trigonométricas aos triângulos retângulos ADE e ACG, vemos que

$$\cos \beta = \frac{2}{\sqrt{5}}$$
, $\sin \beta = \frac{1}{\sqrt{5}}$ e $\cos \alpha = \frac{3}{5}$

E então

$$\cos 2\beta =$$

 $\cos^2 \beta - \sin^2 \beta =$
 $4/5 - 1/5 =$
 $3/5 = \cos \alpha$

Ou seja, cos $2\beta = \cos \alpha$

Quatro esferas de mesmo raio R > 0 são tangentes externamente duas a duas, de forma que seus centros formam um tetraedro regular com arestas de comprimento 2R. **DETERMINE**, em função de R, a expressão do volume do tetraedro circunscrito às quatro esferas.

RESOLUÇÃO:

Considere primeiramente os seguintes dados:

Altura de um tetraedro de lado I: $h = \frac{I\sqrt{6}}{3}$

Volume de um tetraedro de lado I: $V = \frac{I^3 \sqrt{2}}{12}$

Considere as ilustrações (1) e (2) a seguir. (1) ilustra uma das faces do tetraedro grande, em que estão marcados os pontos A, B e C de contato entre o plano e as três esferas que o tocam. O triângulo ABC que aparece na imagem é a projeção da face, do tetraedro menor, que é paralela à face do tetraedro maior que está representada. As marcações de ângulos se devem ao fato de as faces do tetraedro serem triângulos eqüiláteros e às simetrias da situação. Observe o comprimento **a** assinalado. Ele é a distância entre um ponto de tangência e o vértice mais próximo. Observe agora a figura (2). Nela, está representada parte de uma seção feita no tetraedro de modo que o plano seccionador passa por dois vértices e pela metade do segmento que liga os outros dois vértices. Mais especificamente, no desenho D é um ponto de tangência entre uma esfera e uma face do tetraedro grande, V é um vértice, E é o centro de uma esfera e, consequentemente, o segmento VE pertence à altura do tetraedro maior. Note que, como o segmento VD também é a distância entre um ponto de tangência e o vértice mais próximo, ele também tem comprimento **a**.

Ilustração 1

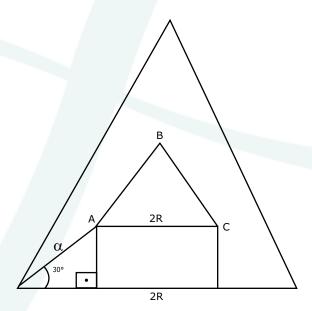
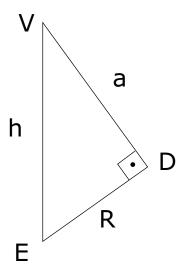


Ilustração 2



Quaisquer dois tetraedros são semelhantes, em especial, os dois do problema. Utilizando dessa semelhança, estabeleçamos uma relação entre seus lados e suas alturas:

$$\frac{I_{\text{maior}}}{I_{\text{menor}}} = \frac{h_{\text{maior}}}{h_{\text{menor}}}$$

Sabemos que
$$I_{menor} = 2R$$
, e então $h_{menor} = \frac{2R\sqrt{6}}{3}$

Resposta: $V = \frac{2\sqrt{2}R^3 (1 + \sqrt{6})^3}{2}$

Sabemos ainda, pela figura (1), que $I_{maior} = 2R + 2.a.$ sen 60°. Note agora que h_{maior} vale a soma de R, que é a distância de uma face do tetraedro grande à face correspondente do tetraedro pequeno, com a altura do tetraedro pequeno, que já conhecemos, com $\sqrt{R^2 + a^2}$ pelo triângulo retângulo da figura 2. Jogando esses valores, obtemos

$$\frac{2R+2.a.sen \ 60^{\circ}}{2R} = \frac{R+\frac{2R\sqrt{6}}{3}+\sqrt{R^2+a^2}}{\frac{2R\sqrt{6}}{3}}$$

$$\frac{4R^2\sqrt{6}}{3}+4Ra.\frac{\sqrt{6}}{3}\frac{\sqrt{3}}{2}=2R^2+\frac{4R^2\sqrt{6}}{3}+2R\sqrt{R^2+a^2}$$

$$a\sqrt{2}-R=\sqrt{R^2+a^2}$$

$$\cancel{Z}a^{\cancel{Z}}+\cancel{R^{\cancel{Z}}}-2\sqrt{2}R\cancel{a}=\cancel{R^{\cancel{Z}}}+\cancel{a^2}$$

$$a=2\sqrt{2}R$$
Portanto, o lado do tetraedro grande é $I_{maior}=2R+2.2\sqrt{2}R.\frac{\sqrt{3}}{2}\Rightarrow I_{maior}=2R\left(1+\sqrt{6}\right)$
E seu volume é $V=\frac{\left(2R\left(1+\sqrt{6}\right)\right)^3\sqrt{2}}{12}\Rightarrow V=\frac{8\sqrt{2}R^3\left(1+\sqrt{6}\right)^3}{12}\Rightarrow V=\frac{2\sqrt{2}R^3\left(1+\sqrt{6}\right)^3}{3}$